Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27.033
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(15): e2313866121, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38564639

RESUMO

Transposable element invasions have a profound impact on the evolution of genomes and phenotypes. It is thus an important open question how often such TE invasions occur. To address this question, we utilize the genomes of historical specimens, sampled about 200 y ago. We found that the LTR retrotransposons Blood, Opus, and 412 spread in Drosophila melanogaster in the 19th century. These invasions constitute second waves, as degraded fragments were found for all three TEs. The composition of Opus and 412, but not of Blood, shows a pronounced geographic heterogeneity, likely due to founder effects during the invasions. Finally, we identified species from the Drosophila simulans complex as the likely origin of the TEs. We show that in total, seven TE families invaded D. melanogaster during the last 200y, thereby increasing the genome size by up to 1.2Mbp. We suggest that this high rate of TE invasions was likely triggered by human activity. Based on the analysis of strains and specimens sampled at different times, we provide a detailed timeline of TE invasions, making D. melanogaster the first organism where the invasion history of TEs during the last two centuries could be inferred.


Assuntos
Drosophila melanogaster , Retroelementos , Animais , Humanos , Drosophila melanogaster/genética , Retroelementos/genética , Genoma , Elementos de DNA Transponíveis , Evolução Molecular
2.
Int J Mol Sci ; 25(7)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38612549

RESUMO

Erythritol has shown excellent insecticidal performance against a wide range of insect species, but the molecular mechanism by which it causes insect mortality and sterility is not fully understood. The mortality and sterility of Drosophila melanogaster were assessed after feeding with 1M erythritol for 72 h and 96 h, and gene expression profiles were further compared through RNA sequencing. Enrichment analysis of GO and KEGG revealed that expressions of the adipokinetic hormone gene (Akh), amylase gene (Amyrel), α-glucosidase gene (Mal-B1/2, Mal-A1-4, Mal-A7/8), and triglyceride lipase gene (Bmm) were significantly up-regulated, while insulin-like peptide genes (Dilp2, Dilp3 and Dilp5) were dramatically down-regulated. Seventeen genes associated with eggshell assembly, including Dec-1 (down 315-fold), Vm26Ab (down 2014-fold) and Vm34Ca (down 6034-fold), were significantly down-regulated or even showed no expression. However, there were no significant differences in the expression of three diuretic hormone genes (DH44, DH31, CAPA) and eight aquaporin genes (Drip, Big brain, AQP, Eglp1, Eglp2, Eglp3, Eglp4 and Prip) involved in osmolality regulation (all p value > 0.05). We concluded that erythritol, a competitive inhibitor of α-glucosidase, severely reduced substrates and enzyme binding, inhibiting effective carbohydrate hydrolysis in the midgut and eventually causing death due to energy deprivation. It was clear that Drosophila melanogaster did not die from the osmolality of the hemolymph. Our findings elucidate the molecular mechanism underlying the mortality and sterility in Drosophila melanogaster induced by erythritol feeding. It also provides an important theoretical basis for the application of erythritol as an environmentally friendly pesticide.


Assuntos
Proteínas de Drosophila , Infertilidade , Animais , Feminino , Transcriptoma , Drosophila melanogaster/genética , Oviposição , alfa-Glucosidases , Perfilação da Expressão Gênica , Eritritol/farmacologia , Amilases , Proteínas de Drosophila/genética
3.
Int J Mol Sci ; 25(7)2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38612878

RESUMO

We developed a procedure for locating genes on Drosophila melanogaster polytene chromosomes and described three types of chromosome structures (gray bands, black bands, and interbands), which differed markedly in morphological and genetic properties. This was reached through the use of our original methods of molecular and genetic analysis, electron microscopy, and bioinformatics data processing. Analysis of the genome-wide distribution of these properties led us to a bioinformatics model of the Drosophila genome organization, in which the genome was divided into two groups of genes. One was constituted by 65, in which the genome was divided into two groups, 62 genes that are expressed in most cell types during life cycle and perform basic cellular functions (the so-called "housekeeping genes"). The other one was made up of 3162 genes that are expressed only at particular stages of development ("developmental genes"). These two groups of genes are so different that we may state that the genome has two types of genetic organization. Different are the timings of their expression, chromatin packaging levels, the composition of activating and deactivating proteins, the sizes of these genes, the lengths of their introns, the organization of the promoter regions of the genes, the locations of origin recognition complexes (ORCs), and DNA replication timings.


Assuntos
Drosophila , Genes Essenciais , Animais , Drosophila/genética , Drosophila melanogaster/genética , Cromatina , Íntrons
4.
Nat Commun ; 15(1): 2872, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605003

RESUMO

Animals employ different strategies to establish mating boundaries between closely related species, with sex pheromones often playing a crucial role in identifying conspecific mates. Many of these pheromones have carbon-carbon double bonds, making them vulnerable to oxidation by certain atmospheric oxidant pollutants, including ozone. Here, we investigate whether increased ozone compromises species boundaries in drosophilid flies. We show that short-term exposure to increased levels of ozone degrades pheromones of Drosophila melanogaster, D. simulans, D. mauritiana, as well as D. sechellia, and induces hybridization between some of these species. As many of the resulting hybrids are sterile, this could result in local population declines. However, hybridization between D. simulans and D. mauritiana as well as D. simulans and D. sechellia results in fertile hybrids, of which some female hybrids are even more attractive to the males of the parental species. Our experimental findings indicate that ozone pollution could potentially induce breakdown of species boundaries in insects.


Assuntos
Drosophila melanogaster , Drosophila , Animais , Masculino , Feminino , Drosophila melanogaster/genética , Reprodução , Drosophila simulans , Carbono , Feromônios
5.
Nucleus ; 15(1): 2339214, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38597409

RESUMO

The nuclear lamina (NL) changes composition for regulation of nuclear events. We investigated changes that occur in Drosophila oogenesis, revealing switches in NL composition during germ cell differentiation. Germline stem cells (GSCs) express only LamB and predominantly emerin, whereas differentiating nurse cells predominantly express LamC and emerin2. A change in LamC-specific localization also occurs, wherein phosphorylated LamC redistributes to the nuclear interior only in the oocyte, prior to transcriptional reactivation of the meiotic genome. These changes support existing concepts that LamC promotes differentiation, a premise that was tested. Remarkably ectopic LamC production in GSCs did not promote premature differentiation. Increased LamC levels in differentiating germ cells altered internal nuclear structure, increased RNA production, and reduced female fertility due to defects in eggshell formation. These studies suggest differences between Drosophila lamins are regulatory, not functional, and reveal an unexpected robustness to level changes of a major scaffolding component of the NL.


Assuntos
Proteínas de Drosophila , Lâmina Nuclear , Animais , Feminino , Drosophila melanogaster/genética , Proteínas de Drosophila/genética , Drosophila , Diferenciação Celular , Células Germinativas
6.
Elife ; 122024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38587455

RESUMO

The color pattern of insects is one of the most diverse adaptive evolutionary phenotypes. However, the molecular regulation of this color pattern is not fully understood. In this study, we found that the transcription factor Bm-mamo is responsible for black dilute (bd) allele mutations in the silkworm. Bm-mamo belongs to the BTB zinc finger family and is orthologous to mamo in Drosophila melanogaster. This gene has a conserved function in gamete production in Drosophila and silkworms and has evolved a pleiotropic function in the regulation of color patterns in caterpillars. Using RNAi and clustered regularly interspaced short palindromic repeats (CRISPR) technology, we showed that Bm-mamo is a repressor of dark melanin patterns in the larval epidermis. Using in vitro binding assays and gene expression profiling in wild-type and mutant larvae, we also showed that Bm-mamo likely regulates the expression of related pigment synthesis and cuticular protein genes in a coordinated manner to mediate its role in color pattern formation. This mechanism is consistent with the dual role of this transcription factor in regulating both the structure and shape of the cuticle and the pigments that are embedded within it. This study provides new insight into the regulation of color patterns as well as into the construction of more complex epidermal features in some insects.


Assuntos
Bombyx , Lepidópteros , Animais , Bombyx/genética , Drosophila melanogaster/genética , Pigmentação/genética , Drosophila , Larva/genética , Fatores de Transcrição/genética
7.
Zoolog Sci ; 41(1): 4-13, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38587512

RESUMO

The past few decades have witnessed increasing research clarifying the role of endocrine signaling in the regulation of aging in both vertebrates and invertebrates. Studies using the model organism fruit fly Drosophila melanogaster have largely advanced our understanding of evolutionarily conserved mechanisms in the endocrinology of aging and anti-aging. Mutations in single genes involved in endocrine signaling modify lifespan, as do alterations of endocrine signaling in a tissue- or cell-specific manner, highlighting a central role of endocrine signaling in coordinating the crosstalk between tissues and cells to determine the pace of aging. Here, we review the current landscape of research in D. melanogaster that offers valuable insights into the endocrine-governed mechanisms which influence lifespan and age-related physiology.


Assuntos
Drosophila melanogaster , Drosophila , Animais , Drosophila melanogaster/genética , Envelhecimento , Longevidade , Mutação
8.
PLoS One ; 19(4): e0293252, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38593121

RESUMO

Motor and cognitive aging can severely affect life quality of elderly people and burden health care systems. In search for diagnostic behavioral biomarkers, it has been suggested that walking speed can predict forms of cognitive decline, but in humans, it remains challenging to separate the effects of biological aging and lifestyle. We examined a possible association of motor and cognitive decline in Drosophila, a genetic model organism of healthy aging. Long term courtship memory is present in young male flies but absent already during mid life (4-8 weeks). By contrast, courtship learning index and short term memory (STM) are surprisingly robust and remain stable through mid (4-8 weeks) and healthy late life (>8 weeks), until courtship performance collapses suddenly at ~4.5 days prior to death. By contrast, climbing speed declines gradually during late life (>8 weeks). The collapse of courtship performance and short term memory close to the end of life occur later and progress with a different time course than the gradual late life decline in climbing speed. Thus, during healthy aging in male Drosophila, climbing and courtship motor behaviors decline differentially. Moreover, cognitive and motor performances decline at different time courses. Differential behavioral decline during aging may indicate different underlying causes, or alternatively, a common cause but different thresholds for defects in different behaviors.


Assuntos
Proteínas de Drosophila , Drosophila melanogaster , Animais , Masculino , Humanos , Idoso , Drosophila melanogaster/genética , Corte , Instinto , Drosophila/genética , Envelhecimento/psicologia , Proteínas de Drosophila/genética
9.
Am Nat ; 203(5): 551-561, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38635366

RESUMO

AbstractSocial behaviors can be influenced by the genotypes of interacting individuals through indirect genetic effects (IGEs) and can also display developmental plasticity. We investigated how developmental IGEs, which describe the effects of a prior social partner's genotype on later behavior, can influence aggression in male Drosophila melanogaster. We predicted that developmental IGEs cannot be estimated by simply extending the effects of contextual IGEs over time and instead have their own unique effects on behavior. On day 1 of the experiment, we measured aggressive behavior in 15 genotypic pairings (n=600 males). On day 2, each of the males was paired with a new opponent, and aggressive behavior was again measured. We found contextual IGEs on day 1 of the experiment and developmental IGEs on day 2 of the experiment: the influence of the day 1 partner's genotype on the focal individual's day 2 behavior depended on the genotypic identity of both the day 1 partner and the focal male. Importantly, the developmental IGEs in our system produced fundamentally different dynamics than the contextual IGEs, as the presence of IGEs was altered over time. These findings represent some of the first empirical evidence demonstrating developmental IGEs, a first step toward incorporating developmental IGEs into our understanding of behavioral evolution.


Assuntos
Agressão , Drosophila melanogaster , Humanos , Animais , Masculino , Drosophila melanogaster/genética , Genótipo , Variação Genética , Comportamento Social
10.
Nat Commun ; 15(1): 3326, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637532

RESUMO

Cdk8 in Drosophila is the orthologue of vertebrate CDK8 and CDK19. These proteins have been shown to modulate transcriptional control by RNA polymerase II. We found that neuronal loss of Cdk8 severely reduces fly lifespan and causes bang sensitivity. Remarkably, these defects can be rescued by expression of human CDK19, found in the cytoplasm of neurons, suggesting a non-nuclear function of CDK19/Cdk8. Here we show that Cdk8 plays a critical role in the cytoplasm, with its loss causing elongated mitochondria in both muscles and neurons. We find that endogenous GFP-tagged Cdk8 can be found in both the cytoplasm and nucleus. We show that Cdk8 promotes the phosphorylation of Drp1 at S616, a protein required for mitochondrial fission. Interestingly, Pink1, a mitochondrial kinase implicated in Parkinson's disease, also phosphorylates Drp1 at the same residue. Indeed, overexpression of Cdk8 significantly suppresses the phenotypes observed in flies with low levels of Pink1, including elevated levels of ROS, mitochondrial dysmorphology, and behavioral defects. In summary, we propose that Pink1 and Cdk8 perform similar functions to promote Drp1-mediated fission.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Humanos , Fosforilação , Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Dinâmica Mitocondrial/genética , Quinases Ciclina-Dependentes/genética , Quinases Ciclina-Dependentes/metabolismo , Quinase 8 Dependente de Ciclina/genética , Quinase 8 Dependente de Ciclina/metabolismo
11.
Mol Genet Genomics ; 299(1): 46, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38642133

RESUMO

Adenosine-to-inosine (A-to-I) RNA editing, resembling A-to-G mutation, confers adaptiveness by increasing proteomic diversity in a temporal-spatial manner. This evolutionary theory named "proteomic diversifying hypothesis" has only partially been tested in very few organisms like Drosophila melanogaster, mainly by observing the positive selection on nonsynonymous editing events. To find additional genome-wide evidences supporting this interesting assumption, we retrieved the genomes of four Drosophila species and collected 20 deep-sequenced transcriptomes of different developmental stages and neuron populations of D. melanogaster. We systematically profiled the RNA editomes in these samples and performed meticulous comparative genomic analyses. Further evidences were found to support the diversifying hypothesis. (1) None of the nonsynonymous editing sites in D. melanogaster had ancestral G-alleles, while the silent editing sites had an unignorable fraction of ancestral G-alleles; (2) Only very few nonsynonymous editing sites in D. melanogaster had corresponding G-alleles derived in the genomes of sibling species, and the fraction of such situation was significantly lower than that of silent editing sites; (3) The few nonsynonymous editing with corresponding G-alleles had significantly more variable editing levels (across samples) than other nonsynonymous editing sites in D. melanogaster. The proteomic diversifying nature of RNA editing in Drosophila excludes the restorative role which favors an ancestral G-allele. The few fixed G-alleles in sibling species might facilitate the adaptation to particular environment and the corresponding nonsynonymous editing in D. melanogaster would introduce stronger advantage of flexible proteomic diversification. With multi-Omics data, our study consolidates the nature of evolutionary significance of A-to-I RNA editing sites in model insects.


Assuntos
Drosophila melanogaster , RNA , Animais , RNA/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Proteômica , Edição de RNA/genética , Adenosina/genética , Adenosina/metabolismo , Inosina/genética , Inosina/metabolismo , Genômica , Drosophila/genética
12.
PLoS Genet ; 20(4): e1011226, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38578788

RESUMO

CRISPR-based gene drives offer promising prospects for controlling disease-transmitting vectors and agricultural pests. A significant challenge for successful suppression-type drive is the rapid evolution of resistance alleles. One approach to mitigate the development of resistance involves targeting functionally constrained regions using multiple gRNAs. In this study, we constructed a 3-gRNA homing gene drive system targeting the recessive female fertility gene Tyrosine decarboxylase 2 (Tdc2) in Drosophila suzukii, a notorious fruit pest. Our investigation revealed only a low level of homing in the germline, but feeding octopamine restored the egg-laying defects in Tdc2 mutant females, allowing easier line maintenance than for other suppression drive targets. We tested the effectiveness of a similar system in Drosophila melanogaster and constructed additional split drive systems by introducing promoter-Cas9 transgenes to improve homing efficiency. Our findings show that genetic polymorphisms in wild populations may limit the spread of gene drive alleles, and the position effect profoundly influences Cas9 activity. Furthermore, this study highlights the potential of conditionally rescuing the female infertility caused by the gene drive, offering a valuable tool for the industrial-scale production of gene drive transgenic insects.


Assuntos
Tecnologia de Impulso Genético , Infertilidade Feminina , Feminino , Animais , Humanos , Drosophila/genética , Drosophila melanogaster/genética , Infertilidade Feminina/genética , Sistemas CRISPR-Cas , Frutas , RNA Guia de Sistemas CRISPR-Cas , Fenótipo
13.
Sci Adv ; 10(16): eadh3425, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38630810

RESUMO

Drosophila melanogaster is a widely used model organism for studying environmental adaptation. However, the genetic diversity of populations in Asia is poorly understood, leaving a notable gap in our knowledge of the global evolution and adaptation of this species. We sequenced genomes of 292 D. melanogaster strains from various ecological settings in China and analyzed them along with previously published genome sequences. We have identified six global genetic ancestry groups, despite the presence of widespread genetic admixture. The strains from China represent a unique ancestry group, although detectable differentiation exists among populations within China. We deciphered the global migration and demography of D. melanogaster, and identified widespread signals of adaptation, including genetic changes in response to insecticides. We validated the effects of insecticide resistance variants using population cage trials and deep sequencing. This work highlights the importance of population genomics in understanding the genetic underpinnings of adaptation, an effort that is particularly relevant given the deterioration of ecosystems.


Assuntos
Drosophila melanogaster , Metagenômica , Animais , Drosophila melanogaster/genética , Variação Genética , Ecossistema , África Subsaariana , China
14.
Mol Biol Evol ; 41(4)2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38577785

RESUMO

Transposable elements (TEs) are major components of eukaryotic genomes and are implicated in a range of evolutionary processes. Yet, TE annotation and characterization remain challenging, particularly for nonspecialists, since existing pipelines are typically complicated to install, run, and extract data from. Current methods of automated TE annotation are also subject to issues that reduce overall quality, particularly (i) fragmented and overlapping TE annotations, leading to erroneous estimates of TE count and coverage, and (ii) repeat models represented by short sections of total TE length, with poor capture of 5' and 3' ends. To address these issues, we present Earl Grey, a fully automated TE annotation pipeline designed for user-friendly curation and annotation of TEs in eukaryotic genome assemblies. Using nine simulated genomes and an annotation of Drosophila melanogaster, we show that Earl Grey outperforms current widely used TE annotation methodologies in ameliorating the issues mentioned above while scoring highly in benchmarking for TE annotation and classification and being robust across genomic contexts. Earl Grey provides a comprehensive and fully automated TE annotation toolkit that provides researchers with paper-ready summary figures and outputs in standard formats compatible with other bioinformatics tools. Earl Grey has a modular format, with great scope for the inclusion of additional modules focused on further quality control and tailored analyses in future releases.


Assuntos
Elementos de DNA Transponíveis , Drosophila melanogaster , Animais , Elementos de DNA Transponíveis/genética , Anotação de Sequência Molecular , Drosophila melanogaster/genética , Genômica/métodos , Biologia Computacional
15.
Elife ; 122024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38569007

RESUMO

The ability to independently control gene expression in two different tissues in the same animal is emerging as a major need, especially in the context of inter-organ communication studies. This type of study is made possible by technologies combining the GAL4/UAS and a second binary expression system such as the LexA system or QF system. Here, we describe a resource of reagents that facilitate combined use of the GAL4/UAS and a second binary system in various Drosophila tissues. Focusing on genes with well-characterized GAL4 expression patterns, we generated a set of more than 40 LexA-GAD and QF2 insertions by CRISPR knock-in and verified their tissue specificity in larvae. We also built constructs that encode QF2 and LexA-GAD transcription factors in a single vector. Following successful integration of this construct into the fly genome, FLP/FRT recombination is used to isolate fly lines that express only QF2 or LexA-GAD. Finally, using new compatible shRNA vectors, we evaluated both LexA and QF systems for in vivo gene knockdown and are generating a library of such RNAi fly lines as a community resource. Together, these LexA and QF system vectors and fly lines will provide a new set of tools for researchers who need to activate or repress two different genes in an orthogonal manner in the same animal.


In order for researchers to understand how organisms develop and function, they often switch specific genes on or off in certain tissues or at selected times. This can be achieved using genetic tools called binary expression systems. In the fruit fly ­ a popular organism for studying biological processes ­ the most common is the GAL4/UAS system. In this system, a protein called GAL4 is expressed in a specific organ or tissue where it activates a UAS element ­ a genetic sequence that is inserted in front of the gene that is to be switched on. This can also include genes inserted into the fruit fly encoding fluorescent proteins or stretches of DNA coding for factors that can silence specific genes. For example, fruit flies expressing GAL4 protein specifically in nerve cells and a UAS element in front of a gene for a fluorescent protein will display fluorescent nerve cells, which can then be examined using fluorescence microscopy. Studying how organs communicate with one other can require controlled expression of multiple genes at the same time. In fruit flies, other binary expression systems that are analogous to the GAL4/UAS system (known as LexA/LexAop and QF/QUAS) can be used in tandem. For example, to study gut-brain communication, the GAL4/UAS system might be used to switch on the gene for an insulin-like protein in the gut, with one of the other systems controlling the expression of its corresponding receptor in the brain. However, these experiments are currently difficult because, while there are thousands of GAL4/UAS genetic lines, there are only a few LexA/LexAop and QF/QUAS genetic lines. To address this lack of resources, Zirin et al. produced a range of genetically engineered fruit flies containing the LexA/LexAop and QF/QUAS binary expression systems. The flies expressed LexA or QF in each of the major fly organs, including the brain, heart, muscles, and gut. A fluorescent reporter gene linked to the LexAop or QUAS elements, respectively, was then used to test the specificity to single organs and compare the different systems. In some organs the LexA/LexAop system was more reliable than the QF/QUAS system. However, both systems could be successfully combined with genetic elements to switch on a fluorescent reporter gene or switch off a gene of interest in the intended organ. The resources developed by Zirin et al. expand the toolkit for studying fruit fly biology. In future, it will be important to understand the differences between GAL4, LexA and QF systems, and to increase the number of fruit fly lines containing the newer binary expression systems.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Drosophila/genética , Drosophila/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Expressão Gênica , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Animais Geneticamente Modificados/metabolismo
16.
PLoS One ; 19(4): e0302240, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38625910

RESUMO

CO2 anesthesia is the most common method for immobilizing Drosophila for research purposes. But CO2 exposure has consequences-it can impact fertility, behavior, morphogenesis, and cytoskeletal dynamics. In this respect, Drosophila is an outstanding model for studying the impact of CO2 exposure on tissues. In this study we explored the response of intracellular pH (pHi) to a one-minute CO2 pulse using a genetically encoded, ubiquitously expressed pH sensor, tpHusion, to monitor pHi within a live, intact, whole fly. We compared wild-type flies to flies lacking Imaginal disc growth factors (Idgfs), which are chitinase-like proteins that facilitate developmental processes and the innate immune response. Morphogenetic and cytoskeletal defects in Idgf-null flies are enhanced after CO2 exposure. We found that pHi drops sharply within seconds of the beginning of a CO2 pulse and recovers over several minutes. The initial profile was nearly identical in control and Idgf-null flies but diverged as the pHi returned to normal. This study demonstrates the feasibility of monitoring pH in live adult Drosophila. Studies exploring pH homeostasis are important for understanding human pathologies associated with pH dysregulation.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Humanos , Drosophila/metabolismo , Dióxido de Carbono , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Concentração de Íons de Hidrogênio , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo
17.
Epigenetics Chromatin ; 17(1): 9, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561749

RESUMO

BACKGROUND: CTCF is highly likely to be the ancestor of proteins that contain large clusters of C2H2 zinc finger domains, and its conservation is observed across most bilaterian organisms. In mammals, CTCF is the primary architectural protein involved in organizing chromosome topology and mediating enhancer-promoter interactions over long distances. In Drosophila, CTCF (dCTCF) cooperates with other architectural proteins to establish long-range interactions and chromatin boundaries. CTCFs of various organisms contain an unstructured N-terminal dimerization domain (DD) and clusters comprising eleven zinc-finger domains of the C2H2 type. The Drosophila (dCTCF) and human (hCTCF) CTCFs share sequence homology in only five C2H2 domains that specifically bind to a conserved 15 bp motif. RESULTS: Previously, we demonstrated that CTCFs from different organisms carry unstructured N-terminal dimerization domains (DDs) that lack sequence homology. Here we used the CTCFattP(mCh) platform to introduce desired changes in the Drosophila CTCF gene and generated a series of transgenic lines expressing dCTCF with different variants of the N-terminal domain. Our findings revealed that the functionality of dCTCF is significantly affected by the deletion of the N-terminal DD. Additionally, we observed a strong impact on the binding of the dCTCF mutant to chromatin upon deletion of the DD. However, chromatin binding was restored in transgenic flies expressing a chimeric CTCF protein with the DD of hCTCF. Although the chimeric protein exhibited lower expression levels than those of the dCTCF variants, it efficiently bound to chromatin similarly to the wild type (wt) protein. CONCLUSIONS: Our findings suggest that one of the evolutionarily conserved functions of the unstructured N-terminal dimerization domain is to recruit dCTCF to its genomic sites in vivo.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Humanos , Animais Geneticamente Modificados/metabolismo , Fator de Ligação a CCCTC/metabolismo , Cromatina/metabolismo , Dimerização , Drosophila/genética , Drosophila melanogaster/genética , Proteínas de Drosophila/metabolismo , Mamíferos/genética
18.
PLoS Genet ; 20(3): e1011169, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38437244

RESUMO

The basement membrane (BM) is an essential structural element of tissues, and its diversification participates in organ morphogenesis. However, the traffic routes associated with BM formation and the mechanistic modulations explaining its diversification are still poorly understood. Drosophila melanogaster follicular epithelium relies on a BM composed of oriented BM fibrils and a more homogenous matrix. Here, we determined the specific molecular identity and cell exit sites of BM protein secretory routes. First, we found that Rab10 and Rab8 define two parallel routes for BM protein secretion. When both routes were abolished, BM production was fully blocked; however, genetic interactions revealed that these two routes competed. Rab10 promoted lateral and planar-polarized secretion, whereas Rab8 promoted basal secretion, leading to the formation of BM fibrils and homogenous BM, respectively. We also found that the dystrophin-associated protein complex (DAPC) and Rab10 were both present in a planar-polarized tubular compartment containing BM proteins. DAPC was essential for fibril formation and sufficient to reorient secretion towards the Rab10 route. Moreover, we identified a dual function for the exocyst complex in this context. First, the Exo70 subunit directly interacted with dystrophin to limit its planar polarization. Second, the exocyst complex was also required for the Rab8 route. Altogether, these results highlight important mechanistic aspects of BM protein secretion and illustrate how BM diversity can emerge from the spatial control of distinct traffic routes.


Assuntos
Proteínas de Drosophila , Drosophila melanogaster , Animais , Membrana Basal/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Distrofina , Citoplasma/metabolismo , Epitélio/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo
19.
Environ Toxicol Pharmacol ; 107: 104412, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38492762

RESUMO

Iron oxide nanoparticles (IONPs) have useful properties, such as strong magnetism and compatibility with living organisms which is preferable for medical applications such as drug delivery and imaging. However, increasing use of these materials, especially in medicine, has raised concerns regarding potential risks to human health. In this study, IONPs were coated with silicon dioxide (SiO2), citric acid (CA), and polyethylenimine (PEI) to enhance their dispersion and biocompatibility. Both coated and uncoated IONPs were assessed for genotoxic effects on Drosophila melanogaster. Results showed that uncoated IONPs induced genotoxic effects, including mutations and recombinations, while the coated IONPs demonstrated reduced or negligible genotoxicity. Additionally, bioinformatic analyses highlighted potential implications of induced recombination in various cancer types, underscoring the importance of understanding nanoparticle-induced genomic instability. This study highlights the importance of nanoparticle coatings in reducing potential genotoxic effects and emphasizes the necessity for comprehensive toxicity assessments in nanomaterial research.


Assuntos
Drosophila melanogaster , Nanopartículas , Animais , Humanos , Drosophila melanogaster/genética , Dióxido de Silício/toxicidade , Nanopartículas Magnéticas de Óxido de Ferro , Compostos Férricos/toxicidade
20.
Methods Cell Biol ; 185: 35-48, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38556450

RESUMO

Childhood cancer is a major cause of death in developed countries, and while treatments and survival rates have improved, long-term side effects remain a challenge. The genetic component of pediatric tumors and their aggressive progression, makes the study of childhood cancer a complex area of research. Here, we introduce the fruit fly Drosophila melanogaster as study model. We emphasize its numerous advantages, including binary gene expression systems that enable precise control over the timing and location of gene expression manipulation, the capacity to combine multiple genes associated with cancer or the testing of human cancer variants within a live, intact animal. As an illustrative example, we focus on the Drosophila cancer paradigm which involves medically relevant genes, the Notch and PI3K/Akt signaling pathways. We describe how this cancer paradigm allows assessing two critical aspects of tumorigenesis during juvenile stages: (1) viability (do animals with particular cancer mutations survive into adulthood?), and (2) tumor burden (what percentage of animals bearing the cancer mutations actually develop cancer and what is the extent of the tumor?). We highlight the potential of Drosophila as a molecular therapeutic tool for drug screening and drug repurposing of medicines already approved to treat other diseases in children, thereby accelerating the potential translation of results into humans. This preclinical animal model sustains huge potential and is cost-effective. It allows screening of thousands of compounds and genes at a relatively low cost and human efforts, opening innovative venues to explore more effective and safer treatments of childhood cancer.


Assuntos
Drosophila melanogaster , Neoplasias , Criança , Animais , Humanos , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Drosophila , Modelos Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...